
Proper incorporation of the self-adjoint extension method to the Green function formalism:

one-dimensional -function potential case

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1996 J. Phys. A: Math. Gen. 29 6407

(http://iopscience.iop.org/0305-4470/29/19/024)

Download details:

IP Address: 171.66.16.70

The article was downloaded on 02/06/2010 at 04:01

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/29/19
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen.29 (1996) 6407–6411. Printed in the UK

Proper incorporation of the self-adjoint extension method
to the Green function formalism: one-dimensional
δ′-function potential case
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Department of Physics, Kyung Nam University, Masan, 631-701, Korea

Received 4 April 1996

Abstract. The one-dimensionalδ′-function potential is discussed in the framework of the
Green function formalism without invoking perturbation expansion. It is shown that the energy-
dependent Green function for this case is crucially dependent on the boundary conditions which
are provided by the self-adjoint extension method. The most general Green function which
contains four real self-adjoint extension parameters is constructed. The relation between the
bare coupling constant and the self-adjoint extension parameter is also derived.

Since the Kronig–Penny model [1] has been successful for the description of the energy
band in solid-state physics, the point interaction problem has been applied in the various
branches of physics for a long time. Recently the two-dimensionalδ-function potential has
been of interest in the context of the Aharonov–Bohm (AB) effect of spin-1

2 particles [2, 3]
in which the delta function occurs as the mathematical description of the Zeeman interaction
of the spin with a magnetic flux tube. In [4] two different approaches, renormalization and
self-adjoint extension [5, 6], are presented for this subject. More recently the same problem
has been re-examined in the framework of the Green function formalism [7, 8]. In [8]
the present author showed how to incorporate the self-adjoint extension method within the
Green function formalism without invoking the perturbation expansion.

Unlike the two- and three-dimensional cases, one-dimensional point interaction provides
a four-parameter family solution, characterized by the boundary conditions atx = 0:

ϕ(ε) = ωaϕ(−ε) + ωbϕ′(−ε)

ϕ′(ε) = ωcϕ(−ε) + ωdϕ′(−ε) (1)

whereε is an infinitesimal positive parameter andω ∈ C; a, b, c, d ∈ R, satisfying|ω| = 1
and ad − bc = 1 [6, 9]. Recently the path integral for the one-dimensionalδ′-function
potential has been calculated by incorporating Neumann boundary conditions within the
usual perturbation theory of one-dimensional Dirac particle in order for the coupling constant
to be infinitely repulsive [10].

In this paper we will discuss the one-dimensionalδ′-function potential in the framework
of the Green function formalism without using a perturbation expansion. It will be shown
that the energy-dependent Green function is crucially dependent on the boundary conditions
which are provided by the self-adjoint extension method in the present formalism. Choosing
the boundary condition

ϕ′(ε) = ϕ′(−ε) = ϕ′(0)

ϕ(ε) − ϕ(−ε) = βϕ′(0) (2)
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which is easily obtained from equation (1) by requiringc = 0, ω = a = d = 1, andb = β,
one can derive a similar result to that in [10].

However, the advantage of this formalism presented here is that one is free to choose
boundary conditions. This means that one can get more general Green functions by choosing
more general boundary conditions. If one chooses the most general boundary conditions
(1) of the one-dimensional point interaction, the most general Green function, in which four
real self-adjoint extension parameters are contained, can be derived. It is worthwhile noting
that this formalism does not use the complicated perturbation expansion. Therefore, the
calculation is very simple and clear.

Now let us start with one-dimensional system whose Hamiltonian is

H = H0 + vδ′(x) (3)

wherev is the bare coupling constant. AlthoughH0 can involve an arbitrary potential, in
this paper we will only consider the free particle case for simplicity:

H0 = p2

2
. (4)

It is well known that the time-dependent Brownian motion propagator for the Hamiltonian
(3) obeys integral equation [11–13]

G[x, y; t ] = G0[x, y; t ] − v

∫ t

0
ds

∫
dzG0[x, z; t − s]δ′(z)G[z, y; s]. (5)

After integrating with respect toz in equation (5), one can show easily

Ĝ[x, y; E] = Ĝ0[x, y; E] + v

(
∂Ĝ0[x, z; E]

∂z

)
z=0

Ĝ[0, y; E]

+vĜ0[x, 0; E]

(
∂Ĝ[z, y; E]

∂z

)
z=0

. (6)

Equation (6) is purely formal. This is easily deduced from the fact thatĜ[0, y; E] is not well
defined because of the factor|x| which is contained in(∂Ĝ0[x, z; E]/∂z)z=0. Therefore, at
this stage one has to conjecture the modifications of equation (6). Our conjecture for the
modification of equation (6) is simply to extract the problematic zero point atĜ[x, y; E]
as follows:

Ĝ[x, y; E] = Ĝ0[x, y; E] + v

(
∂Ĝ0[x, z; E]

∂z

)
z=0

Ĝ[ε, y; E]

+vĜ0[x, 0; E]

(
∂Ĝ[z, y; E]

∂z

)
z=ε

for x > 0

Ĝ[x, y; E] = Ĝ0[x, y; E] + v

(
∂Ĝ0[x, z; E]

∂z

)
z=0

Ĝ[−ε, y; E]

+vĜ0[x, 0; E]

(
∂Ĝ[z, y; E]

∂z

)
z=−ε

for x < 0 (7)

which might be a natural modification of equation (6).
In equation (7) the infinitesimal positive parameterε is introduced. By insertingx = ±ε

in the first and second equations of equation (7) respectively, one can derive(
∂Ĝ[z, y; E]

∂z

)
z=ε

=
√

2E

v
[(1 − v)Ĝ[ε, y; E] − Ĝ0[0, y; E]](

∂Ĝ[z, y; E]

∂z

)
z=−ε

=
√

2E

v
[(1 + v)Ĝ[−ε, y; E] − Ĝ0[0, y; E]] . (8)
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By inserting equation (8) into equation (7)̂G[x, y; E] becomes

Ĝ[x, y; E] = Ĝ0[x, y; E] − 1√
2E

e−√
2E(|x|+|y|) + e−√

2E|x|Ĝ[ε, y; E] for x > 0

Ĝ[x, y; E] = Ĝ0[x, y; E] − 1√
2E

e−√
2E(|x|+|y|) + e−√

2E|x|Ĝ[−ε, y; E] for x < 0. (9)

Note that in equation (9) thev-dependence of̂G[x, y; E] is hidden inĜ[±ε, y; E].
Now it is time to incorporate the self-adjoint extension method into the Green function

formalism. First let us consider the simple boundary conditions given in equation (2). By
applying these two boundary conditions tôG[x, y; E], one can show that the boundary
conditions generate two independent equations:

Ĝ[ε, y; E] + Ĝ[−ε, y; E] = 2√
2E

e−√
2E|y|

Ĝ[ε, y; E] − Ĝ[−ε, y; E] = β[(ε(y) + 1)e−√
2E|y| −

√
2EĜ[ε, y; E]] (10)

where

ε(y) = y

|y| .

Therefore, by solving equation (10) the solutions

Ĝ[ε, y; E] = 1√
2E

e−√
2E|y|

(
1 +

√
2E√

2E + 2
β

ε(y)

)

Ĝ[−ε, y; E] = 1√
2E

e−√
2E|y|

(
1 −

√
2E√

2E + 2
β

ε(y)

)
(11)

are easily obtained. By combining equations (9) and (11) we get the final result

Ĝ[x, y; E] = Ĝ0[x, y; E] + ε(x)ε(y)√
2E + 2

β

e−√
2E(|x|+|y|). (12)

The relation between the bare coupling constantv and the self-adjoint extension parameter
β is also obtained by inserting equation (11) into equation (8) and using the continuity
of ∂Ĝ[z, y; E]/∂z at z = 0. Unlike the two- and three-dimensional cases the relation is
dependent on the space:

1

v
=

(
1 +

√
2

E

1

β

)
for y > 0

1

v
= −

(
1 +

√
2

E

1

β

)
for y < 0. (13)

After taking the inverse Laplace transform of equation (12) and using analytic continuation
in time, one can obtain the Feynman propagator (or kernel)K[x, y; t ]:

K[x, y; t ] = 1√
2π it

exp

(
i

2t
|x − y|2

)
+ 1√

2π it
exp

(
i

2t
(|x| + |y|)2

)
ε(x)ε(y)

− 1

β
exp

(
2

β
(|x| + |y|) + 2it

β2

)
erfc

[
1√
2it

[
|x| + |y| + 2it

β

]]
ε(x)ε(y) (14)

where erfc(z) is usual error function. Equation (14) coincides with equation (14) in [10] if
one changes theβ in [10] into −β/2. Therefore we have derived a similar result to that
in [10] without invoking the perturbation expansion. Furthermore, in this formalism one
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can derive a more general Green function (or propagator) by using more general boundary
conditions. Therefore, let us use the most general boundary condition (1) of the one-
dimensional point interaction. In the same way as before these two boundary conditions
provide two independent equations:(

d

b
+

√
2E

)
Ĝ[ε, y; E] − ω

b
Ĝ[−ε, y; E] = (ε(y) + 1)e−√

2E|y|

ω∗

b
Ĝ[ε, y; E] −

(√
2E + a

b

)
Ĝ[−ε, y; E] = (ε(y) − 1)e−√

2E|y| (15)

whereω∗ is the complex conjugate ofω. By inserting the solutions of equation (15)

Ĝ[ε, y; E] = − e−√
2E|y|

c
b

+ √
2E a+d

b
+ 2E

[
ε(y)

(ω

b
−

√
2E − a

b

)
−

(ω

b
+

√
2E + a

b

)]
Ĝ[−ε, y; E] = − e−√

2E|y|
c
b

+ √
2E a+d

b
+ 2E

[
ε(y)

(
d

b
+

√
2E − ω∗

b

)
−

(
d

b
+

√
2E + ω∗

b

)]
(16)

into equation (9) it is straightforward to derive the energy-dependent Green function
corresponding to the most general boundary conditions:

Ĝ[x, y; E] = Ĝ0[x, y; E] +
√

2Eb

D(E)
e−√

2E(|x|+|y|)ε(x)ε(y) − e−√
2E(|x|+|y|)

D(E)

×
[

c√
2E

+ 1

2
(a + d − ω − ω∗) + 1

2
(d − a + ω∗ − ω)ε(x)

+1

2
(d − a + ω − ω∗)ε(y) − 1

2
(a + d − ω − ω∗)ε(x)ε(y)

]
(17)

where

D(E) = c + (a + d)
√

2E + 2Eb. (18)

Note that equation (17) coincides with equation (12) atc = 0, ω = a = d = 1, andb = β.
The energy-dependent Green function for the one-dimensional point interaction is calculated
in [14]. The result (17) is exactly the same as that in [14] although the authors of [14]
claimed that their result is a consequence of the appropriate mixture of one-dimensional
δ- and δ′-potentials. In this paper the same result can be derived by using only the one-
dimensionalδ′-function potential. Of course by following the procedure presented in [14]
one can also obtain the time-dependent Brownian motion propagator and Feynman kernel
straightforwardly. One can also derive the relation between the bare coupling constant and
the self-adjoint parameters as before.
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